When running experiments with deep neural nets you want to use appropriate hardware. Most of the time I work on a thinkpad laptop with no GPU. This makes experimenting painfully slow. A convenient way is to use an AWS instance, for example the p2.xlarge
.
I will assume you have an AWS account (or that you are able to get one, it’s easy). Then I can show you how to efficiently use AWS to do deep learning.
The setup
First you need to add your AWS credentials to ~/.aws/credentials
.
aws_access_key_id = YOUR_KEY
aws_secret_access_key = YOUR_SECRET
If you don’t have a .aws/ directory, just create it. Next you have to set your default region in your ~/.aws/config
by adding
region=eu-west-1
Now the last think you have to do is installing pip install boto3
.
The script
Now we want to automate the creation of a AWS instance as far as possible. We want to use this pre-configured image (so called AMI). Make sure you pick the right one for your region.
This is the script that we will use to spin up a AWS machine with the required ami.
import boto3
import datetime
instance_type = "p2.xlarge"
print("Starting spot instance of type {}".format(instance_type))
client = boto3.client('ec2')
response = client.request_spot_instances(
DryRun=False,
SpotPrice='0.25',
InstanceCount=1,
Type='one-time',
LaunchSpecification={
'ImageId': 'ami-d36386aa',
'KeyName': 'aws_test',
'SecurityGroups': ['dl'],
'InstanceType': instance_type,
'Placement': {
'AvailabilityZone': 'eu-west-1a',
},
'BlockDeviceMappings': [
{
'DeviceName': '/dev/xvda',
'Ebs': {
'SnapshotId': 'snap-0595b270bf9fd5579',
'VolumeSize': 50,
'DeleteOnTermination': True,
'VolumeType': 'gp2',
'Encrypted': False
},
},
],
'EbsOptimized': False,
'Monitoring': {
'Enabled': False
},
'SecurityGroupIds': ['sg-a2dd59db']
})
print(response)
print()
instances = ec2.instances.filter(
Filters=[{'Name': 'instance-state-name', 'Values': ['running']}])
for instance in instances:
print("Id: {}, type: {}, ip: {}".format(instance.id, instance.instance_type, instance.public_ip_address))
You need to apply some changes to make it work for you. You have to change the security groups, the snap-id and your keyName. Now you can simply run this script and you get GPU instance pre-configured for deep learning running and see the IP to connect to with ssh.
Next time we embed this python script in a bash script to automatically add packages to your instance.
Have fun!